Eur. Phys. J. A 15, 449-454 (2002)
DOI 10.1140/epja,/i2002-10064-2

THE EUROPEAN
PHYSICAL JOURNAL A

Configuration-mixed effective SU(3) symmetries

P.O. Hess!®, A. Algora®3, M. Hunyadi®>*, and J. Cseh?

ESSNCV I SR

KVI, 9747 AA Groningen, The Netherlands

Instituto Ciencias Nucleares, UNAM, A.P. 70-543, 04510, México, D. F., Mexico
Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, Pf. 51, Hungary
IFIC-Universitat Valencia, Apartado Oficial 22085, 46071 Valencia, Spain

Received: 23 April 2002/ Revised version: 10 July 2002 /
Published online: 10 December 2002 — (© Societa Italiana di Fisica / Springer-Verlag 2002

Communicated by A. Molinari

Abstract. The procedure of Jarrio et al. (Nucl. Phys. A 528, 409 (1991)) for the determination of the
effective SU(3) symmetry of nuclear states is extended to small deformations and to oblate nuclei. Self-
consistency checks are carried out both for light and for heavy nuclei.

PACS. 21.60.-n Nuclear-structure models and methods — 21.60.Fw Models based on group theory

1 Introduction

The effective symmetry [1] is one of the most general ones
in quantum mechanics. It is a symmetry of the eigenvalue
equation, when neither the (Hamiltonian) operator is sym-
metric (scalar), nor its eigenvectors (transform according
to some irreducible transformations). Yet it may act, and
have important physical consequences.

The mathematical reason for this surprising situation
is provided by the embedded representation [2]. An em-
bedded representation is obtained by calculating the ma-
trix elements of the operators between vectors which are
special linear combinations of those belonging to irre-
ducible representations (irrep). The linear combinations
are special in the sense that their coefficients are the same
for several vectors. When the summation and the inter-
nal product operations are exchangeable (either exactly,
or approximately), then the matrices give (exactly or ap-
proximately) a representation, called embedded.

In physical terms the embedded representation de-
scribes the adiabatic coupling; and it explains why some
models can be successful, when they (seemingly) have no
right to be so.

In nuclear physics the effective SU(3) symmetry
proved to be approximately valid in heavy nuclei, where
the real SU(3) symmetry is badly broken due to the spin-
orbit and other interactions [1]. If a symmetry exists, it
has several important physical consequences, e.g., it pro-
vides us with selection rules.

Selection rules can be very useful in studying nuclear
fragmentations, like, e.g., spontaneous fission, or clusteri-
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zation in general. In light of the recently discovered neu-
tronless cold fission, these questions are of utmost interest
in the structural study of heavy nuclei.

Jarrio et al. proposed a procedure to determine the
effective SU(3) symmetry of heavy nuclei in the re-
gion where the asymptotic Nilsson quantum numbers are
valid [1]. Based on their method we have carried out sym-
metry considerations concerning the relative preference of
different exotic binary clusterizations of the ground state
of the 252Cf nucleus [3]. The possible clusterizations, how-
ever, include not only strongly deformed nuclei, but other
types as well. Therefore, some sort of extension of the
method of [1] is highly needed for systematic studies.

Here we propose an interpolation method for the de-
termination of the effective SU(3) symmetry between zero
and large quadrupole deformations. It is based on the nu-
merical expansion of the Nilsson states of a given defor-
mation in terms of the asymptotic basis, and applying
the procedure of [1] for these linear combinations. This
method is not based on a rigorous proof, it should be con-
sidered as a recipe for the interpolation. Nevertheless, self-
consistency arguments show that it gives reliable results
both in the case of some light nuclei, where the real SU(3)
symmetry is valid, and in the case of heavy nuclei.

The structure of this article is as follows. In sect. 2 we
review the determination of the effective U(3) symmetries
for large deformation. The prolate case is simply a sum-
mary of the method presented in [1], while the oblate case
is a new extention of this method based on the same ar-
guments of ref. [1]. Section 3 describes a generalization for
small deformations. Then we consider some applications
both to light and to heavy nuclei, in order to perform self-
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consistency checks. Finally, some conclusions are drawn in
sect. 5.

2 Determination of the effective (A, p)’s for
large deformations

2.1 Prolate shapes

In ref. [1] a method is given for the determination of the
effective SU(3) symmetry based on the occupation of the
Nilsson levels of a given deformation. Here we indicate the
main steps and use the notation of ref. [1].

If by aj (i = z,+,—) the spherical components of
the creation operators of the three-dimensional harmonic
oscillator are denoted, the algebra of the U(3) group is

given by all possible products azaj of the creation and
annihilation operators. They are divided into raising, low-
ering and weight operators. The weights are defined such
that an oscillation quantum in “2” has a larger weight
than the spherical oscillation quantum “+4” and the latter
one has a larger weight than “—”. The two weight opera-
tors of SU(3) are combinations of the number operators.
The SU(3) labels (A, 1) can be obtained by applying the
weight operators (n, —n; ) and (ny —n_) to the highest-
weight state |y, h.wt.), where n; = aTal is the number
operator of the “i” degree of freedom. This state satisfies
the condition

a’ia+|<p)\lbh'Wt a ‘(pMMhWt >

) =
aia,|<p>\u,h.wt )y =0,
(m2 = 1) o hawt.) = Alpag Bt
(s — ) hewts) = o howt.), 1)

In general a many-particle Nilsson state, obtained by
filling the Nilsson orbitals from below, does not satisfy the
requirement of eq. (1). However, in the asymptotic limit
some of these conditions are satisfied by a many-particle
Nilsson state |pq):

a+|900> = a a_|po) =
Qo = Q0|<P0>a (2)
where
Qy=2n,—n; —n_+3. (3)

Here (Qo — 3) is the (M = 0) component of the SU(3)
quadrupole operator [1]. The authors of ref. [1] prove ex-
plicitly, based on the order of filling of the asymptotic
single-particle states, that this condition is fulfilled for
large (e > 0.3) deformation.

Using this property and restricting to prolate nuclei,
two formulas are obtained, one for the determination of an
average value of (2A+ ) and another one for (1 +2). The
numbers obtained are called effective quantum numbers.
These are

(22 +p) = Z(lenz ~ny —n_|f),

(1) () +2) *42 elala_|f)? (4)
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where the indices f and e refer to occupied (filled)
and empty asymptotic Nilsson orbitals, respectively. The
asymptotic Nilsson orbitals are denoted by |Nn,AX),
where NV is the total number of oscillation quanta, n, is
the number of oscillation quanta in the z-direction, A is
the projection of the orbital angular momentum on the
z-axis and X is the projection of the spin on the z-axis [4,
5]. The non-zero matrix elements of the second formula in
eq. (4) are given by [1]

[(Nn.A+2%|ala_|NnAD)|* =

1
TV —n.

A)(N —n, + A +2). (5)
When evaluating (5) one has to pay attention to which
orbital is filled and if the final orbital (|e)) is empty or
not. A and X' can have negative values and each orbital
is doubly occupied for the case of even-even nuclei. In the
above equations only those oscillator shells enter which are
open, i.e. closed oscillator shells do not contribute because
the net sum of those in egs. (4) and (5) is zero.

2.2 Oblate shapes

For certain applications we need to extend this method to
oblate nuclei as well. For these nuclei a similar procedure
can be followed.

Moving from the prolate side to the oblate side of de-
formation the order of the Nilsson orbitals is inverted.
E.g., for the prolate case states with the largest number of
quanta along the symmetry axes are lowest in energy, for
the oblate case they are the highest. Then, to obtain the
effective SU(3) irrep, one does not start from the highest-
weight state of SU(3), but from the lowest-weight state,
defined by

a1a2|<p)\u,1.wt Z|<p>\#,1.wt.> =

) =
alafp,,lwt) =

(nz - 1’1+)|(,0)\M,1.Wt > = /’L‘(pkuvl wt. >

(04 — 1) L) = A, Lwt.), (6)
where “l.wt.” stands for “lowest weight”. The procedure
to follow is completely analogous to the one for prolate
shapes, as given in ref. [1]. The results are similar, ex-
cept that the quantum numbers \ and u are interchanged.
Instead of applying raising operators to a many-particle
Nilsson state |¢g), in the asymptotic limit, one has to ap-

ply lowering operators. The many-particle Nilsson state
then satisfies

a'a.|po) = ala.|p)) =0, (7)

which can be proven using figures of the filling order of
the asymptotic states as given in ref. [1]. The equivalent
formulas to eq. (4) are now

> (f2n. —ny —n_|[f),
f

(A +2) =4 (elala_| ). 8)

fe

Qu+ ) =
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One has to keep in mind that only the valence particles
(which may include several open shells) contribute to the
effective (A, p). In order to describe the transition rates
one has to introduce an effective electric charge, as in the
SU(3) model for light nuclei [6]. The same has to be done
if we are interested in the deformation of the mass dis-
tribution. As shown in ref. [7], a good estimate for the
effective charge is a value of 2.

3 Extension of the procedure to small
deformation

The asymptotic limit of the Nilsson model is reached when
the orbitals approach straight lines. This can be seen by
inspecting the Hamiltonian of the Nilsson model (for axial
symmetric nuclei) given by

H = hwN — hwr?3Ys0(0, ) + C(I- ) + DI?, (9)

where the strength of the spin-orbit and 1?2 interaction can
be obtained from ref. [8].

In eq. (9) the dependence on the deformation § is lin-
ear. The factor of 3 is proportional to the z-component
of the quadrupole operator. Diagonalizing the Hamilto-
nian will give the single-particle orbitals as a function of
(. The asymptotic limit is reached when the slope of the
single-particle orbitals do not change any more, i.e. the in-
dividual single-particle orbitals have constant quadrupole
moment. (Of course, the nucleus itself increases its total
quadrupole moment because single-particle orbitals with
larger quadrupole moments are lowered with increasing 3
and get occupied first.)

By inspecting fig. 1, we observe that for | 5] > 0.3 most
of the orbitals are approximately straight lines, i.e. the
asymptotic limit has been nearly reached. However, the
lower the absolute value of the projection 2 = A + X' of
an orbital is, the less the condition of an asymptotic limit
is realized. This means that the orbitals are not pure, they
are mized and the relevance of the other components be-
yond the asymptotic component is larger. Though in most
cases the dominant part is still given by an asymptotic
Nilsson level, the procedure proposed in ref. [1] can only
be considered as an approximation.

The intention of what follows is to find an interpolation
between the range of |3| > 0.3 to 5 =0. At § = 0 the re-
sulting effective SU(3) irrep should be (0,0) and the (A, p)
values should increase to those obtained for || > 0.3. One
possibility, the one we follow, is to use a modified proce-
dure of ref. [1]. We expand each Nilsson orbital at a given
deformation § in terms of the asymptotic Nilsson states,
i.e. when we denote by [1),) a given orbital at deformation
0, then

|wNa>: Z C’roztz,/l,.Q|N7nZaA7~Q>~
n.,A,$

(10)

In order to get the effective (A, u1), in egs. (4) and (8)
for the filled and empty states we use now the expan-
sion (10) in terms of the asymptotic Nilsson states. This
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Fig. 1. Nilsson diagram for protons (neutrons), Z or N < 50
in the range of —0.8 < # < 0.8. Orbitals are denoted by the
quantum numbers 2[Nn,A]. The strength of the spin-orbit
and [? interaction are taken from ref. [8]. Note that most of
the orbitals are nearly straight lines for |G| > 0.3.

is done by using a numerical routine which is based on an
earlier work [9]. The procedure violates a condition made
in ref. [1] and should be looked at as a “recipe” for inter-
polating between large B to zero deformation only. (Here
we refer to the observation of ref. [1] on the filling of the
Nilsson orbitals: the states satisfy the condition (2) for
prolate and (7) for oblate nuclei. Due to crossing of levels
at low deformation this is true only approximately.)

We still have to verify if the final result gives the in-
terpolation searched for. Before doing that we relate the
effective (A, p) to the deformation of the system. This re-
lation is given in ref. [10], and it is

167

2 2 2
=—=(A A 11
B =< NOQ( + 1?4 M), (11)
(in ref. [10] the square over Ny is missing), where Ny =~

0.943. An analogous expression is also given in ref. [7].
Equation (11) contains already the effective mass charge
of 2 [7].

4 Applications

In what follows we assume an arbitrary but given (i, (8-
initial), fill in the Nilsson orbitals from below at that de-
formation value and determine the effective (A, ). Then
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Table 1. Self-consistency check for light nuclei. Starting from
the real U(3) symmetry quantum numbers we can determine (3
according to (11). Then using this deformation we can follow
the procedures explained in the text to obtain the new U(3)
symmetry quantum numbers. Self-consistency is achieved if the
starting quantum numbers (real U(3)) are similar to the results
obtained.

The European Physical Journal A

Table 2. Comparison of the results obtained after applying the
different approaches (mixing and asymptotic) with real U(3)
symmetry quantum numbers. In this case the starting deforma-
tions are taken from ref. [11], corrected according to (12). For
the “He a || = 0.0 was used. The effective symmetry quantum
numbers are determined according to the relations given in the
text.

Nucleus Real U(3) |8] Eff. UB)mix. Eff. U(3)asym. Nucleus |3] RealU(3) Eff. U(3)mix. Eff. U(3)asym.
‘He [0,0,0] 0.0 [0,0,0] [0,0,0] ‘He [0,0,0] [0,0,0] [0,0,0]
12c [4,4,0] 0.48 [4,4,0] [4,4,0] 2c 0.50 [4,4,0] [4,4,0] [4,4,0]
e [4,4,2] 0.20 [4,3,3] [4,4,2] e 0.32 [4,4,2] [4,4,2] [4,4,2]
150 [4,4,4] 0.00 [4,4,4] [4,4,4] 160 0.32 [4,4,4] [4,4,4] [4,4,4]
20Ne [12,4,4]  0.49 [12,4,4] [12,4,4] Ne  0.60  [12,4,4] [12,4,4] [12,4,4]
Mg [16,8,4]  0.51 [16,7,5] [16,7,5] Mg 051 [16,8,4] [16,7,5] [16,7,5]
36Ar [20,20,12]  0.22 [20,19,13] [20,20,12] 36Ar 0.25 [20,20,12] [20,19,13] [20,20,12]
“°Ca  [20,20,20] 0.00  [20,20,20] [20,20,20] 0Ca 012 [20,20,20] [20,20,20] [20,20,20]

eq. (11) will be used to get (in general another) Bg, (5-
final) deformation. Consistency is achieved if Bgy, is the
same or at least near the 3y, from which we started. We
call asymptotic approach, the one introduced by Jarrio et
al. [1], and mizing approach, the interpolation procedure
introduced here.

The effective (A, 1) sometimes contains, e.g., one even
and one odd value where both should be even as suggested
by the spin content at low energy. For those cases, one has
to take the nearest even value instead of the odd value.
This problem persists also in the asymptotic limit and has
its origin in the fact that the values are only estimations.

4.1 Light nuclei

A simple way for testing the reliability of the new pro-
cedure is offered by its application to light nuclei, which
have approximately good U(3) symmetry. One can start
with the leading U(3) irrep of the ground state of a nu-
cleus, determine its quadrupole deformations by eq. (11),
carry out the procedure as described above (or in ref. [1]),
and compare the resulting U(3) irreps with the original
ones. Obviously, the self-consistency requirement is ful-
filled (exactly or approximately) if the results are identi-
cal or similar to the starting irreps. We have carried out
such calculations for some light nuclei, and the results are
shown in table 1.

A further comparison can be done by using defor-
mation parameters from the compilation [11], instead of
deriving them from the U(3) irreps. This comparison is
shown in table 2.

A fairly good agreement is obtained in both cases.

4.2 Heavy nuclei

As examples for the application to heavy nuclei we con-
sider 158Er and 2°2Cf. The first one is a well-studied nu-
cleus [1] and the second one attracted a lot of interest

recently, due to its decay via cold fission [12]. A first esti-
mate for the experimental deformation 5, can be deduced
from the tables of ref. [11] (the values of this reference are
denoted here by Or) or in case there is no experimental de-
formation one can take theoretical values from the widely
used compilation [13] by Méller et al. The Sr as given in
ref. [11] has to be corrected by

ﬂR = ﬂin(]- + 0366m)

necessary for large deformation [5]. (The reason for this
correction is that in ref. [11] the deformation G, is de-
duced from the B(E2;0 — 27) value, using eq. (152) of
ref. [5] for the Rotation-Vibration Model of the nucleus.
This includes a correction factor (1 + 0.3603;,), not taken
into account in ref. [11]. For large deformations, this cor-
rection factor gives an important contribution.)

The values of (i, in the ground state of the nucleus,
obtained in this way are 0.30 and 0.28 for '8 Er and 252Cf,
respectively, if we use the compilation of Raman [11], and
0.32 and 0.24, respectively, if we use the compilation of
Méller et al. [13] which do not require correction.

In order to obtain an overall picture of the approxima-
tion, instead of using only the value of 3;,, for ground state,
we vary the deformation artificially from zero to large val-
ues. At each point the effective SU(3) irrep is determined
and from the (A, u) values the deformation value (g, as
obtained via eq. (11), is deduced. In figs. 2 and 3 (up-
per panels) we plot the effective (2A + ) values obtained
for 1%8Er and 252Cf, respectively, versus the deformation
value fi,. In figs. 2 and 3 (lower panels) we plot the Sgp
as obtained via eq. (11) versus Bin. In each case, the up-
per line gives the result following the procedure as given
in ref. [1] while the lower curves show the result of the
recipe which allows mixing of asymptotic Nilsson levels.
The dotted curve in fig. 2 and 3 is given by g, = Gin-

As a general feature there is a difference between the
two curves even for large B, indicating that the asymp-
totic limit has not been reached yet, though the Nilsson
orbitals appear to be nearly straight lines. This finding is
in agreement with the one of ref. [14]. Furthermore, the

(12)
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Fig. 2. Self-consistency check of the different approaches
for 1°®Er. The continuous line represents the results for the
asymptotic limit (Jarrio’s prescription applied to asymptotic
states), the dashed line represents the results from our (mix-
ing) method. The upper part of the figure shows the effective
(2X + p) values as a function of the initial deformation, and
the lower part gives the corresponding deformations. See text
for more details. In the lower figure, the Ban = Bin line, which
corresponds to self-consistency, is represented (dotted line).

recipe fulfills better the requirement of self-consistency,
i.e. it results in a deformation parameter closer to the
original one, though the values of the procedure of Jarrio
et al. [1] are not very far either. Only the “mixing” ap-
proach is able to cross the Gg, = Oin self-consistency curve
for the studied nuclei at approximately the ground-state
deformations. At B, = 0, however, the effective (A, ),
and therefore 3, is not entirely zero but small.

5 Summary and conclusions

In this paper we have proposed a recipe for the exten-
sion of the Jarrio et al. [1] procedure for the determina-
tion of the effective SU(3) symmetry. Our recipe includes
two steps: 1) a numerical expansion of the Nilsson state
in terms of asymptotic basis, and ii) the application of
the formulas of ref. [1] for the calculation of the effective
SU(3) labels.

This procedure is not based on a rigorous proof, it
is only a method for the interpolation between the zero
deformation, and the asymptotic region of deformation,
where the results are well established. Nevertheless, self-
consistency checks support the reliability of our recipe
both for light and for heavy nuclei.

The extended method may prove to be a useful tool in
the cluster studies of heavy nuclei [15], where it is essential
to incorporate the effects of deformation as well as that
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Fig. 3. The same as in fig. 2, now for the nucleus 2*?Cf.

of the Pauli exclusion principle. This is subject to further
investigations by the authors.

Another potential application is given by shell model
calculations based on an SU(3) basis [16], especially good
for deformed nuclei. In ref. [16] the spectrum of heavy
nuclei is obtained, restricting to the pseudo-SU(3) model
space [17], treating the nucleons in the unique parity states
as spectators. There are, however, several important dy-
namical properties which have to include explicitly the nu-
cleons in the unique parity states, e.g., backbending. Our
contribution can be used to obtain the estimated SU(3) ir-
rep, as done in this contribution, and to use the programs
developed by the Louisiana group [18] to get the complete
SU(3) content, which in general is quite large for heavy
nuclei. Then a cut in the SU(3) basis could be performed
around the value of the effective SU(3). We hope that this
contribution gives decisive help to these projects.

This work was supported by the CONACyT-MTA and
CSIC-MTA exchange programs, and by the OTKA (Grant
No. T37502). A.A. acknowledges partial support of the EC
HPMFCT-1999-00394 contract.
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